Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460641

RESUMO

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Assuntos
Cisteína Endopeptidases , Plasmodium falciparum , Dobramento de Proteína
3.
Hum Genomics ; 18(1): 7, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291512

RESUMO

The present study investigated two single nucleotide polymorphisms (SNPs)-rs479200 and rs516651 in the host EGLN1/PHD2 gene for their association with COVID-19 severity. A retrospective cohort of 158 COVID-19 patients from the Indian population (March 2020 to June 2021) was enrolled. Notably, the frequency of C allele (0.664) was twofold higher than T allele (0.336) in severe COVID-19 patients. Here, we report a novel finding that the C allele of rs479200 in the EGLN1 gene imparts a high risk of severe COVID-19 (odds ratio-6.214 (1.84-20.99) p = 0.003; 9.421 (2.019-43.957) p = 0.004), in additive inheritance model (adjusted and unadjusted, respectively).


Assuntos
COVID-19 , Humanos , Alelos , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/genética , Polimorfismo de Nucleotídeo Único/genética , Povo Asiático , Predisposição Genética para Doença , Frequência do Gene , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética
4.
Sci Rep ; 13(1): 14808, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684270

RESUMO

Malaria prevalence has become medically important and a socioeconomic impediment for the endemic regions, including Purulia, West Bengal. Geo-environmental variables, humidity, altitude, and land use patterns are responsible for malaria. For surveillance of the endemic nature of Purulia's blocks, statistical and spatiotemporal factors analysis have been done here. Also, a novel approach for the Pf malaria treatment using methanolic leaf extract of Morus alba S1 has significantly reduced the parasite load. The EC50 value (1.852) of the methanolic extract of M. alba S1 with P. falciparum 3D7 strain is close to the EC50 value (0.998) of the standard drug chloroquine with the same chloroquine-sensitive strain. Further studies with an in-silico model have shown successful interaction between DHFR and the phytochemicals. Both 1-octadecyne and oxirane interacted favourably, which was depicted through GC-MS analysis. The predicted binary logistic regression model will help the policy makers for epidemiological surveillance in malaria-prone areas worldwide when substantial climate variables create a circumstance favourable for malaria. From the in vitro and in silico studies, it can be concluded that the methanolic extract of M. alba S1 leaves were proven to have promising antiplasmodial activity. Thus, there is a scope for policy-driven approach for discovering and developing these lead compounds and undermining the rising resistance to the frontline anti-malarial drugs in the world.


Assuntos
Malária Falciparum , Malária , Morus , Malária/tratamento farmacológico , Cloroquina , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
5.
J Glob Antimicrob Resist ; 35: 67-75, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633420

RESUMO

OBJECTIVES: Artemisinin (ART) resistance in Plasmodium is threatening the artemisinin combination therapies-the first line of defence against malaria. ART resistance has been established to be mediated by the Plasmodium Kelch13 (PfK13) protein. For the crucial role of PfK13 in multiple pathways of the Plasmodium life cycle and ART resistance, it is imperative that we investigate its interacting partners. METHODS: We recombinantly expressed PfK13-p (Bric a brac/Poxvirus and zinc finger and propeller domains), generating anti-PfK13-p antibodies to perform co-immunoprecipitation assays and probed PfK13 interacting partners. Surface plasmon resonance and pull-down assays were performed to establish physical interactions of representative proteins with PfK13-p. RESULTS: The co-immunoprecipitation assays identified 17 proteins with distinct functions in the parasite life cycle- protein folding, cellular metabolism, and protein binding and invasion. In addition to the overlap with previously identified proteins, our study identified 10 unique proteins. Fructose-biphosphate aldolase and heat shock protein 70 demonstrated strong biophysical interaction with PfK13-p, with KD values of 6.6 µM and 7.6 µM, respectively. Additionally, Plasmodium merozoite surface protein 1 formed a complex with PfK13-p, which is evident from the pull-down assay. CONCLUSION: This study adds to our knowledge of the PfK13 protein in mediating ART resistance by identifying new PfK13 interacting partners. Three representative proteins-fructose-biphosphate aldolase, heat shock protein 70, and merozoite surface protein 1-demonstrated clear evidence of biophysical interactions with PfK13-p. However, elucidation of the functional relevance of these physical interactions are crucial in context of PfK13 role in ART resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , Animais , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Proteína 1 de Superfície de Merozoito/uso terapêutico , Resistência a Medicamentos , Proteínas de Protozoários/genética , Mutação , Malária Falciparum/tratamento farmacológico , Artemisininas/farmacologia , Proteínas de Choque Térmico HSP70/uso terapêutico , Aldeído Liases/uso terapêutico , Frutose/uso terapêutico
6.
Cureus ; 15(2): e34827, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36919074

RESUMO

Background The nucleocapsid protein (N protein) of SARS-CoV-2 is undeniably a potent target for the development of diagnostic tools due to its abundant expression and lower immune evasion pressure compared to spike (S) protein. Methods Blood samples of active COVID-19 infections (n=71) and post-COVID-19 (n=11) were collected from a tertiary care hospital in India; pre-COVID-19 (n=12) sera samples served as controls. Real-time reverse transcriptase-PCR (rRT-PCR) confirmed pooled sera samples (n=5) were used with PEPperCHIP® SARS-CoV-2 Proteome Microarray (PEPperPRINT GmbH, Germany) to screen immunodominant epitopes of SARS-CoV-2. Highly immunodominant epitopes were then commercially synthesized and further validated for their immunoreactivity by dot-blot and ELISA. Results The lowest detectable concentration (LDC) of the N1 peptide in the dot-blot assay was 12.5 µg demonstrating it to be fairly immunoreactive compared to control sera. IgG titers against the contiguous peptide (N2: 156AIVLQLPQGTTLPKGFYAEGS176) was found to be significantly higher (p=0.018) in post-COVID-19 compared to pre-COVID-19 control sera. These results suggested that N2-specific IgG titers buildup over time as expected in post-COVID-19 sera samples, while a non-significant immunoreactivity of the N2 peptide was also observed in active-COVID-19 sera samples. However, there were no significant differences in the total IgG titers between active COVID-19 infections, post-COVID-19 and pre-COVID-19 controls. Conclusion The N2-specific IgG titers in post-COVID-19 samples demonstrated the potential of N protein as an exposure biomarker, particularly in sero-surveillance studies.

7.
Mol Cancer Ther ; 22(2): 254-263, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722141

RESUMO

Antibody-drug conjugates (ADC) delivering pyrrolobenzodiazepine (PBD) DNA cross-linkers are currently being evaluated in clinical trials, with encouraging results in Hodgkin and non-Hodgkin lymphomas. The first example of an ADC delivering a PBD DNA cross-linker (loncastuximab tesirine) has been recently approved by the FDA for the treatment of relapsed and refractory diffuse large B-cell lymphoma. There has also been considerable interest in mono-alkylating PBD analogs. We conducted a head-to-head comparison of a conventional PBD bis-imine and a novel PBD mono-imine. Key Mitsunobu chemistry allowed clean and convenient access to the mono-imine class. Extensive DNA-binding studies revealed that the mono-imine mediated a type of DNA interaction that is described as "pseudo cross-linking," as well as alkylation. The PBD mono-imine ADC demonstrated robust antitumor activity in mice bearing human tumor xenografts at doses 3-fold higher than those that were efficacious for the PBD bis-imine ADC. A single-dose toxicology study in rats demonstrated that the MTD of the PBD mono-alkylator ADC was approximately 3-fold higher than that of the ADC bearing a bis-imine payload, suggesting a comparable therapeutic index for this molecule. However, although both ADCs caused myelosuppression, renal toxicity was observed only for the bis-imine, indicating possible differences in toxicologic profiles that could influence tolerability and therapeutic index. These data show that mono-amine PBDs have physicochemical and pharmacotoxicologic properties distinct from their cross-linking analogs and support their potential utility as a novel class of ADC payload.


Assuntos
Imunoconjugados , Linfoma não Hodgkin , Humanos , Animais , Camundongos , Ratos , Alquilação , DNA , Iminas , Imunoconjugados/farmacologia
8.
Front Vet Sci ; 10: 1127273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777671

RESUMO

Introduction: The imminent risk of zoonoses of non-human malaria parasites is not far from reality in India, as has been observed in the case of Plasmodium knowlesi (Pk), and so is possible with P. cynomolgi (Pc), already reported from South East Asian countries. Therefore, a novel multiplex qPCR assay was developed and evaluated for detection of non-human malaria parasites- Pk and Pc in populations at risk. Methods: The qPCR primers were designed in-house with fluorescence labeled probes (HEX for Pk and FAM for Pc). DNA samples of Pk and Pc were used as templates and further the qPCR assay was evaluated in 250 symptomatic and asymptomatic suspected human blood samples from malaria endemic areas of North Eastern states of India. Results: The qPCR assay successfully amplified the target 18S rRNA gene segment from Pk and Pc and was highly specific for Pk and Pc parasites only, as no cross reactivity was observed with P. falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale (Po). Standard curves were generated to estimate the limit of detection (LOD) of Pk and Pc parasites DNA (0.00275 & 0.075 ng/µl, respectively). Due to COVID-19 pandemic situation during 2020-21, the sample accessibility was difficult, however, we managed to collect 250 samples. The samples were tested for Pf and Pv using conventional PCR- 14 Pf and 11 Pv infections were observed, but no Pk and Pc infections were detected. For Pk infections, previously reported conventional PCR was also performed, but no Pk infection was detected. Discussion: The multiplex qPCR assay was observed to be robust, quick, cost-effective and highly sensitive as compared to the currently available conventional PCR methods. Further validation of the multiplex qPCR assay in field setting is desirable, especially from the high-risk populations. We anticipate that the multiplex qPCR assay would prove to be a useful tool in mass screening and surveillance programs for detection of non-human malaria parasites toward the control and elimination of malaria from India by 2030.

9.
Transl Res ; 249: 28-36, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697275

RESUMO

Malaria is still a global challenge with significant morbidity and mortality, especially in the African, South-East Asian, and Latin American regions. Malaria diagnosis is a crucial pillar in the control and elimination efforts, often accomplished by the administration of mass-scale Rapid diagnostic tests (RDTs). The inherent limitations of RDTs- insensitivity in scenarios of low transmission settings and deletion of one of the target proteins- Histidine rich protein 2/3 (HRP-2/3) are evident from multiple reports, thus necessitating the need to explore novel diagnostic tools/targets. The present study used peptide microarray to screen potential epitopes from 13 antigenic proteins (CSP, EXP1, LSA1, TRAP, AARP, AMA1, GLURP, MSP1, MSP2, MSP3, MSP4, P48/45, HAP2) of P. falciparum. Three cyclic constrained immunoreactive peptides- C6 (EXP1), A8 (MSP2), B7 (GLURP) were identified from 5458 cyclic constrained peptides (in duplicate) against P. falciparum-infected sera. Peptides (C6, A8, B7- cyclic constrained) and (G11, DSQ, NQN- corresponding linear peptides) were fairly immunoreactive towards P. falciparum-infected sera in dot-blot assay. Using direct ELISA, cyclic constrained peptides (C6 and B7) were found to be specific to P. falciparum-infected sera. A substantial number of samples were tested and the peptides successfully differentiated the P. falciparum positive and negative samples with high confidence. In conclusion, the study identified 3 cyclic constrained immunoreactive peptides (C6, B7, and A8) from P. falciparum secretory/surface proteins and further validated for diagnostic potential of 2 peptides (C6 and B7) with field-collected P. falciparum-infected sera samples.


Assuntos
Malária Falciparum , Plasmodium falciparum , Antígenos de Protozoários , Epitopos , Histidina , Humanos , Malária Falciparum/diagnóstico , Proteínas de Membrana , Proteína 1 de Superfície de Merozoito , Peptídeos , Peptídeos Cíclicos
10.
Cytotherapy ; 24(7): 720-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35570170

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use. METHODS: In selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3. RESULTS: Where the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non-tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo. CONCLUSIONS: By combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.


Assuntos
Glipicanas , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Glipicanas/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Inibidores do Fator de Necrose Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Biomol Struct Dyn ; 40(5): 2369-2388, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33155524

RESUMO

The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is responsible for the COVID-19 outbreak. The highly contagious COVID-19 disease has spread to 216 countries in less than six months. Though several vaccine candidates are being claimed, an effective vaccine is yet to come. A novel reverse epitomics approach, 'overlapping-epitope-clusters-to-patches' method is utilized to identify the antigenic regions from the SARS-CoV-2 proteome. These antigenic regions are named as 'Ag-Patch or Ag-Patches', for Antigenic Patch or Patches. The identification of Ag-Patches is based on the clusters of overlapping epitopes rising from SARS-CoV-2 proteins. Further, we have utilized the identified Ag-Patches to design Multi-Patch Vaccines (MPVs), proposing a novel method for the vaccine design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties and cDNA constructs. We identified 73 CTL (Cytotoxic T-Lymphocyte) and 49 HTL (Helper T-Lymphocyte) novel Ag-Patches from the proteome of SARS-CoV-2. The identified Ag-Patches utilized to design MPVs cover 768 overlapping epitopes targeting 55 different HLA alleles leading to 99.98% of world human population coverage. The MPVs and Toll-Like Receptor ectodomain complex shows stable complex formation tendency. Further, the cDNA analysis favors high expression of the MPVs constructs in a human cell line. We identified highly immunogenic novel Ag-Patches from the entire proteome of SARS CoV-2 by a novel reverse epitomics approach and utilized them to design MPVs. We conclude that the novel MPVs could be a highly potential novel approach to combat SARS-CoV-2, with greater effectiveness, high specificity and large human population coverage worldwide. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T Citotóxicos
12.
Clin Cancer Res ; 27(13): 3602-3609, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795255

RESUMO

PURPOSE: MEDI3726 is an antibody-drug conjugate targeting the prostate-specific membrane antigen and carrying a pyrrolobenzodiazepine warhead. This phase I study evaluated MEDI3726 monotherapy in patients with metastatic castration-resistant prostate cancer after disease progression on abiraterone and/or enzalutamide and taxane-based chemotherapy. PATIENTS AND METHODS: MEDI3726 was administered at 0.015-0.3 mg/kg intravenously every 3 weeks until disease progression/unacceptable toxicity. The primary objective was to assess safety, dose-limiting toxicities (DLT), and MTD/maximum administered dose (MAD). Secondary objectives included assessment of antitumor activity, pharmacokinetics, and immunogenicity. The main efficacy endpoint was composite response, defined as confirmed response by RECIST v1.1, and/or PSA decrease of ≥50% after ≥12 weeks, and/or decrease from ≥5 to <5 circulating tumor cells/7.5 mL blood. RESULTS: Between February 1, 2017 and November 13, 2019, 33 patients received MEDI3726. By the data cutoff (January 17, 2020), treatment-related adverse events (TRAE) occurred in 30 patients (90.9%), primarily skin toxicities and effusions. Grade 3/4 TRAEs occurred in 15 patients (45.5%). Eleven patients (33.3%) discontinued because of TRAEs. There were no treatment-related deaths. One patient receiving 0.3 mg/kg had a DLT of grade 3 thrombocytopenia. The MTD was not identified; the MAD was 0.3 mg/kg. The composite response rate was 4/33 (12.1%). MEDI3726 had nonlinear pharmacokinetics with a short half-life (0.3-1.8 days). The prevalence of antidrug antibodies was 3/32 (9.4%), and the incidence was 13/32 (40.6%). CONCLUSIONS: Following dose escalation, no MTD was identified. Clinical responses occurred at higher doses, but were not durable as patients had to discontinue treatment due to TRAEs.


Assuntos
Imunoconjugados , Neoplasias de Próstata Resistentes à Castração , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Androstenos/uso terapêutico , Antígenos de Superfície , Benzamidas/uso terapêutico , Glutamato Carboxipeptidase II/antagonistas & inibidores , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Metástase Neoplásica , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Falha de Tratamento
13.
Cancer Discov ; 11(5): 1100-1117, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419761

RESUMO

The clinical benefit of PD-1 blockade can be improved by combination with CTLA4 inhibition but is commensurate with significant immune-related adverse events suboptimally limiting the doses of anti-CTLA4 mAb that can be used. MEDI5752 is a monovalent bispecific antibody designed to suppress the PD-1 pathway and provide modulated CTLA4 inhibition favoring enhanced blockade on PD-1+ activated T cells. We show that MEDI5752 preferentially saturates CTLA4 on PD-1+ T cells versus PD-1- T cells, reducing the dose required to elicit IL2 secretion. Unlike conventional PD-1/CTLA4 mAbs, MEDI5752 leads to the rapid internalization and degradation of PD-1. Moreover, we show that MEDI5752 preferentially localizes and accumulates in tumors providing enhanced activity when compared with a combination of mAbs targeting PD-1 and CTLA4 in vivo. Following treatment with MEDI5752, robust partial responses were observed in two patients with advanced solid tumors. MEDI5752 represents a novel immunotherapy engineered to preferentially inhibit CTLA4 on PD-1+ T cells. SIGNIFICANCE: The unique characteristics of MEDI5752 represent a novel immunotherapy engineered to direct CTLA4 inhibition to PD-1+ T cells with the potential for differentiated activity when compared with current conventional mAb combination strategies targeting PD-1 and CTLA4. This molecule therefore represents a step forward in the rational design of cancer immunotherapy.See related commentary by Burton and Tawbi, p. 1008.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Células Claras/tratamento farmacológico , Antígeno CTLA-4/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Linfócitos T/imunologia
14.
FEBS Open Bio ; 11(3): 578-587, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174373

RESUMO

Substrate specificity of an enzyme is an important characteristic of its mechanism of action. Investigation of the nucleotide specificity of Plasmodium falciparum succinyl-CoA synthetase (SCS; PfSCS) would provide crucial insights of its substrate recognition. Charged gatekeeper residues have been shown to alter the substrate specificity via electrostatic interactions with approaching substrates. The enzyme kinetics of recombinant PfSCS (wild-type), generated by refolding of the individual P. falciparum SCSß and Blastocystis SCSα subunits, demonstrated ADP-forming activity (KmATP  = 48 µm). Further, the introduction of charged gatekeeper residues, either positive (Lys and Lys) or negative (Glu and Asp), resulted in significant reductions in the ATP affinity of PfSCS. It is interesting to note that the recombinant PfSCSß subunit can be refolded to a functional enzyme conformation using Blastocystis SCSα, indicating the possibility of subunits swapping among different organisms. These results concluded that electrostatic interactions at the gatekeeper region alone are insufficient to alter the substrate specificity of PfSCS, and further structural analysis with a particular focus on binding site architecture is required.


Assuntos
Mutação , Plasmodium falciparum/enzimologia , Succinato-CoA Ligases/química , Succinato-CoA Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Blastocystis/enzimologia , Nucleotídeos/metabolismo , Plasmodium falciparum/química , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Eletricidade Estática , Especificidade por Substrato , Succinato-CoA Ligases/genética
15.
BMC Pulm Med ; 20(1): 302, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198714

RESUMO

BACKGROUND: The increasing trend of Chronic Obstructive Pulmonary Disease (COPD) in becoming the third leading cause of deaths by 2020 is of great concern, globally as well as in India. Dysregulation of protease/anti-protease balance in COPD has been reported to cause tissue destruction, inflammation and airway remodelling; which are peculiar characteristics of COPD. Therefore, it is imperative to explore various serum proteases involved in COPD pathogenesis, as candidate biomarkers. COPD and Asthma often have overlapping symptoms and therefore involvement of certain proteases in their pathogenesis would render accurate diagnosis of COPD to be difficult. METHODS: Serum samples from controls, COPD and Asthma patients were collected after requisite institutional ethics committee approvals. The preliminary analysis qualitatively and quantitatively analyzed various serum proteases by ELISA and mass spectrometry techniques. In order to identify a distinct biomarker of COPD, serum neutrophil elastase (NE) and matrix metalloprotease-2 (MMP-2) from COPD and Asthma patients were compared; as these proteases tend to have overlapping activities in both the diseases. A quantitative analysis of the reactive oxygen species (ROS) in the serum of controls and COPD patients was also performed. Statistical analysis for estimation of p-values was performed using unpaired t-test with 95% confidence interval. RESULTS: Amongst the significantly elevated proteases in COPD patients vs the controls- neutrophil elastase (NE) [P < 0.0241], caspase-7 [P < 0.0001] and matrix metalloprotease-2 (MMP-2) [P < 0.0001] were observed, along with increased levels of reactive oxygen species (ROS) [P < 0.0001]. The serum dipeptidyl peptidase-IV (DPP-IV) [P < 0.0010) concentration was found to be decreased in COPD patients as compared to controls. Interestingly, a distinct elevation of MMP-2 was observed only in COPD patients, but not in Asthma, as compared to controls. Mass spectrometry analysis further identified significant alterations (fold-change) in various proteases (carboxy peptidase, MMP-2 and human leukocyte elastase), anti-proteases (Preg. zone protein, α-2 macroglobulin, peptidase inhibitor) and signalling mediators (cytokine suppressor- SOCS-3). CONCLUSION: The preliminary study of various serum proteases in stable COPD patients distinctly identified elevated MMP-2 as a candidate biomarker for COPD, subject to its validation in large cohort studies.


Assuntos
Elastase de Leucócito/sangue , Metaloproteinase 2 da Matriz/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Espécies Reativas de Oxigênio/sangue , Biomarcadores/sangue , Humanos , Índia , Doença Pulmonar Obstrutiva Crônica/patologia , Índice de Gravidade de Doença
16.
Mol Cancer Ther ; 19(9): 1770-1783, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546659

RESUMO

Antibody-drug conjugates (ADC) are targeted agents that have shown promise in treating cancer. A central challenge in development of ADCs is the relatively narrow therapeutic index observed in clinical studies. Patient selection strategies based on expression of the target in tumors have the potential to maximize benefit and provide the best chance of clinical success; however, implementation of biomarker-driven trials can be difficult both practically and scientifically. We conducted a survey of recent clinical experience from early-phase ADC trials completed between 2000 and 2019 to evaluate the different approaches to patient selection currently being used and assess whether there is evidence that target expression is associated with clinical activity. Our analysis of patient selection strategies indicates that optimal trial design for early-stage trials should be based on multiple factors, including prevalence and heterogeneity of target expression among intent-to-treat patients, as well as biological factors influencing expression of cell surface and soluble target. To ensure a high probability of success, early implementation of patient selection strategies centered around target expression are pivotal to development of ADCs. In this review, we propose a strategic approach that can be applied for optimization of trial design.


Assuntos
Antineoplásicos/uso terapêutico , Redes Reguladoras de Genes , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Análise de Intenção de Tratamento , Terapia de Alvo Molecular , Neoplasias/genética , Seleção de Pacientes
17.
Hum Pathol ; 98: 56-63, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017945

RESUMO

The expression frequency and distribution of glypican-3 (GPC3) was retrospectively assessed by immunohistochemistry in 316 accurately phenotyped ovarian clear cell carcinoma (OCCC) specimens from Canadian patients. The study aimed to evaluate the prevalence of this biomarker in OCCC in a mixed-ethnicity Canadian population and to evaluate associations of GPC3 expression with clinicopathological parameters. Tissue microarrays with napsin A or HNF1ß positive and WT1-negative OCCC specimens were evaluated using a GPC3 antibody clone 1G12. Membranous, cytoplasmic, and Golgi pattern GPC3 expression was noted in 184 of 316 (58.2%) cases; 63 of 316 (20%) cases showed high GPC3 expression (>50% of tumor cells were positive). GPC3 expression was not associated with age, stage, and residual disease after primary surgery. High GPC3 expression did not correlate with a specific morphological pattern or the presence of endometriosis. Furthermore, GPC3 expression was not significantly associated with survival in the entire cohort. Statistically significant association of high GPC3 expression was noted with higher body mass index, napsin A positivity, estrogen receptor (ER) negativity, and ARID1A retention. In a stratified analysis by ARID1A status, high GPC3 expression was significantly associated with unfavorable outcomes in cases with loss of ARID1A (n=10; log rank p=0.0048). Women diagnosed with OCCC and high GPC3 expression were also more likely to receive adjuvant chemotherapy. Considering the tumor-specific membranous expression of GPC3 in 58% of cases and high interobserver reproducibility, GPC3 immunohistochemistry is a robust predictive test for inclusion in clinical trials for GPC3-targeted therapies for OCCC.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma/química , Glipicanas/análise , Neoplasias Ovarianas/química , Canadá , Carcinoma/imunologia , Carcinoma/patologia , Carcinoma/terapia , Quimioterapia Adjuvante , Feminino , Humanos , Imuno-Histoquímica , Imunoterapia , Pessoa de Meia-Idade , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Análise Serial de Tecidos , Resultado do Tratamento , Regulação para Cima
18.
Acta Trop ; 202: 105252, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31678235

RESUMO

G6PD deficiency results from numerous mutations in the G6PD gene and can cause alterations in enzyme function up to varying degrees. P. vivax malaria infections require G6PD deficiency screening because of the potential risk of haemolysis by the gametocytocidal drug (primaquine) during the radical treatment. The present study investigated the incidence of G6PD deficiency from northeast India and further, molecular characterization was performed. During 2014-16, a total of 1,015 patients from four north-eastern states of India (Tripura, Mizoram, Meghalaya & Arunachal Pradesh), were screened for G6PD deficiency, using Beutler's fluorescence spot test (FST) and confirmed with SPAN G6PD kit. The deficient individuals (55/1015, 5.4%) were further characterized by PCR-RFLP and DNA sequencing except one case of lost to follow up. As observed by FST, the frequency of G6PD deficient males (42/538, 7.8%) were found to be higher than females (13/477, 2.73%), (p < 0.0001). Two non-synonymous mutations; G6PD-D (Mahidol)487A (48/54, 88.9%; 36 hemizygous males, 8 homozygous and 4 heterozygous females) and G6PD-D (Acores)595T (2/54, 3.7%) were identified. Remaining (4/54, 7.4%) individuals could not be characterized. Molecular modeling and dynamic simulations were performed for the G6PD wild-type (G6PD-WT) enzyme and its variants. The in-silico results demonstrated alterations in the secondary structures & crucial loss of ligand-protein interactions, which might result in reduced enzyme function, leading to enzyme deficiency. To the best of our knowledge, this is the first report to document G6PD-Mahidol and G6PD-Acores variants from malaria-endemic regions of northeast India, and provided molecular insights on the varied genetic makeup of the studied population.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Adulto , Simulação por Computador , Análise Mutacional de DNA , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Heterozigoto , Humanos , Índia/epidemiologia , Masculino , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
20.
Mol Cancer Ther ; 17(10): 2176-2186, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30065100

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust antitumor activity against the LNCaP and the castration-resistant CWR22Rv1 prostate cancer cell line xenografts. MEDI3726 also demonstrated durable antitumor activity in the PSMA-positive human prostate cancer patient-derived xenograft (PDX) LuCaP models. This activity correlated with increased phosphorylated Histone H2AX in tumor xenografts treated with MEDI3726. MEDI3726 is being evaluated in a phase I clinical trial as a treatment for patients with metastatic castrate-resistant prostate cancer (NCT02991911). Mol Cancer Ther; 17(10); 2176-86. ©2018 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glutamato Carboxipeptidase II/antagonistas & inibidores , Imunoconjugados/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Humanos , Imuno-Histoquímica , Macaca fascicularis , Masculino , Camundongos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...